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Abstract Three methods are investigated for the tracking problem of the famous
cart–pole system (a kind of planar inverted pendulum). The output is required to
track a sinusoid signal. Control design is based on the linearized model. First, we
show that using output error and states feedback, approximate tracking can be
achieved with bounded tracking error. Then exact tracking via output regulation is
investigated. By constructing a regulator equation, the equivalent input and
equivalent states which are needed to maintain output at the reference trajectory can
be calculated. We show that the tracking problem is equivalent to the stabilizing
problem in the states error coordinate. Finally, we study exact tracking via stable
system center method. Because of the nonminimum phase property, a bounded
solution for the internal dynamics is required and is estimated by stable system
center method. Then the tracking problem can also be transformed into a stabilizing
problem. Simulations are made for each method.

Keywords Tracking control ⋅ Nonminimum phase ⋅ Output regulation ⋅
Stable system center ⋅ Inverted pendulum

1 Introduction

Tracking control is much more complicated than stabilizing control, especially
when the system is nonminimum phase. Stabilizing control only requires main-
taining the output at a set-point, i.e., the equilibrium. For linear system, the stabi-
lizing control theory has already been very perfect. Through proper coordinate
change, the equilibrium can be moved to zero, and then various linear control
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methods such as pole assignment and LQR can be used. So to say, it is not difficult
for an engineer with basic control knowledge to accomplish the task of stabilizing a
linear system. However, when it turns to the tracking problem, which aims at
keeping the output moving along a varying trajectory (such as a sinusoid signal),
things become much more challenging even for linear system.

The most widely applied methods, PID control and the basic feedback control
method, and pole assignment, are not tracking control methods. They can be used to
set-point control and achieve zero steady-state error, but when used in tracking
control, the error increases as the tracking signal frequency goes up. To eliminate
the tracking error, researchers have done amount of work in the past years. Sum-
marizing the existed literatures, we may find that inversion seems necessary for
exact tracking. Recall stabilizing control, the equilibrium to be achieved is known,
which means we know the value every state should reach. Finally, the output will
reach the set-point and other states also reach their steady values. What about
tracking control? When the output exactly moves along the reference trajectory, we
can imagine that other states should also move along certain trajectories. So this is
the case for exact tracking: every state does not converge to fixed point but con-
verges to fixed trajectory. In other words, all states as well as the input have specific
trajectories to maintain the output at the reference trajectory. If we can calculate
these trajectories, then tracking problems can be converted into stabilizing problem.
This idea is the key for exact tracking.

In a manner of speaking, exact tracking is indeed an inversion problem, that is,
giving a plant and a reference output, to calculate the equivalent input and equiv-
alent states. A similar concept, named as stable inversion, has been widely studied
[1, 2]. However, what we focused on is another method, output regulation theory
[3, 4], which aims to achieve asymptotic tracking and disturbance rejection for a
class of reference trajectories and disturbances. Suppose the reference output is
generated by a known exosystem; then regulator equation can be constructed based
on the plant and exosystem. The solution of the regulator equation directly leads to
equivalent input and equivalent states. It should be noted that, whether the system is
minimum phase or nonminimum phase, it has no influence on using output regu-
lation theory.

The application of differential geometry theory to nonlinear control [5] brings us
a new perspective to look at the problem of tracking control. Now we know that a
system is composed of external and internal states. The dynamics of the internal
states, i.e., the internal dynamics, is only driven by the external states. When it
comes to minimum phase system, the internal dynamics is naturally stable, thus we
only need to design tracking controller for the external states. This is not difficult
because the external states are derivatives of the output which implies the equivalent
external states are simply the derivatives of the reference output. But for nonmini-
mum phase system, the internal dynamics is not stable, which means the internal
states will not converge to their equivalent trajectories naturally. We need to force it.
The equivalent internal states value is a bounded solution of the internal dynamics,
and is also called ideal internal dynamics (IID). Stable system center [6, 7]
is a method to estimate the IID asymptotically. When IID is obtained, we then
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know the equivalent values of all states and the tracking problem can be transformed
into stabilizing problem.

Inverted pendulum is a classical nonlinear, unstable, nonminimum phase,
underactuated system which has been widely used in control education and research
to demonstrate the effectiveness of various control methods. References [8–13]
have studied the stabilizing problem of inverted pendulum while the tracking
problem has been studied in [14–16]. Here we will use it as an example to study
some tracking control methods. Our methods are based on the linearized model.

2 Model Description

The cart–pole system consists of a cart and an inverted pendulum as shown in
Fig. 1.

Here u is an external force that moves the cart in the horizontal plane, s is the cart
position, θ is the pole angle, M is the mass of cart, m is the mass of pole, and l is the
half length of pole. According to [8], the motion equations of the inverted pen-
dulum are

M +mð Þs ̈−ml cos θθ ̈+ml sin θθ2̈ = u

Iθ ̈−ml cos θs ̈−mgl sin θ=0
ð1Þ

where I =4ml2 ̸3 is the moment of inertia of the pendulum with respect to the pivot.
Define v= s ̇,ω= θ as the cart velocity and angle acceleration, where (1) can be
written in state space form

s ̇= v, v ̇=
mg sin θ cos θ− 4mlω2 sin θ 3̸

4 M +mð Þ 3̸−m cos2 θ
+

4 3̸
4 M +mð Þ 3̸−m cos2 θ

u

θ ̈=ω, ω ̇=
M +mð Þg sin θ−mlω2 sin θ cos θ

4 M +mð Þl 3̸−ml cos2 θ
+

cos θ
4 M +mð Þl 3̸−ml cos2 θ

u

ð2Þ

Fig. 1 Cart–pole system
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where g=9.8 m/s2 is the acceleration due to gravity, and other parameters are
selected as m=1 kg,M =10 kg, l=1m.

It can be verified that ðs*, 0, 0, 0Þ is the equilibrium set (i.e., the system is in
equilibrium when all states derivatives equal zero). The linearized model of the
nonlinear model (2) in the equilibrium ðs*, 0, 0, 0Þ is

s ̇= v, v ̇=0.7171θ+0.09756u

θ=ω, ω ̇=7.888θ+0.07317u
ð3Þ

This linearized model will be used later for tracking controller design, while the
nonlinear model is used for simulation. The control objective is to track sinusoid
trajectory for the cart position and pole angle, respectively. Two cases are con-
sidered here:

Case 1: Tracking control of the cart position with the desired trajectory sd = sinðtÞ.
Case 2: Tracking control of the pole angle with the desired trajectory
θd =0.2 sinðtÞ.

3 Approximate Tracking Control

Consider the following nth-order SISO linear system:

x ̇=Ax+Bu, y= x1 ð4Þ

where x= x1, x2, . . . , xn½ �T is the states vector, u, y∈R1 are the input and the output,
respectively. Suppose the desired tracking trajectory is yd, where yd and yḋ are
bounded, and denote the tracking error as x1̃ = y− yd.

Theorem 1 If the feedback control u= −Kx can stabilize system (4), then the
control law

u= −Kx ̃ ð5Þ

with x ̃= x1̃, x2, . . . , xn½ �T can achieve approximate tracking with bounded tracking
error for system (4).

Proof First, it indicates that A−BK is Hurwitz since u= −Kx can stabilize system
(4). And if control law u= −Kx ̃ is applied, the closed-loop system becomes

x ̃̇= A−BKð Þx ̃+ d ð6Þ

where d=AYd −Y ̇d with Yd = yd, 0, . . . , 0½ �T can be seen as a perturbation. Since
A−BK is Hurwitz, according to the input-to-state stability theorem [17], x ̃ will
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remain bounded for bounded d. Thus approximate tracking is achieved. This
completes the proof.

Remark For the inverted pendulum model (4), the first column of A equals zero
which indicates that d= − Yḋ. Thus when yd is a constant, i.e., d=0, control law
u= −Kx ̃ can achieve asymptotic tracking. However, as the frequency of yd
increases, which means the upper bound of d increases, the tracking error will go up.

For case 1, we have x ̃= s− sd, v, θ,ω½ �T , and the control gain is selected as
K = − 200.8, − 248.2, 1851.6, 590.6½ � to place the closed-loop poles at
½− 8, − 9, − 1± i�. The simulation result is shown in Fig. 2, from which we can see
there exists a serious phase lag.

For case 2, we have x ̃= s, v, θ− θd,ω½ �T and K is the same as that in case 1. The
simulation result is presented in Fig. 3. Also a phase lag is observed.

4 Exact Tracking Control via Output Regulation

As mentioned in the former section, using output error and states feedback,
approximate tracking with bounded tracking error can be achieved. In this section
we will illustrate that using output regulation theory, output tracking problem can
be transformed into a stabilizing problem.

First, let us consider how to transform a tracking problem into a stabilizing
problem. Consider the nth-order SISO linear system as follows:
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x ̇=Ax+Bu, y=Cx ð7Þ

where x= x1, x2, . . . , xn½ �T is the states vector, u, y ∈ R1 are the input and output,
respectively.

Suppose the control objective is to let y track yd. To maintain y at yd, we need
certain quantity of control input and the states should also maintain in certain
trajectories. Figuratively, we may call them equivalent input and equivalent states,
and denote by xd, ud, respectively. Obviously, xd, ud should satisfy the following
equation:

xḋ =Axd +Bud, yd =Cxd ð8Þ

Define the states tracking error x ̃= x− xd, output tracking error e= y− yd , and
new control input v= u− ud. Subtracting (8) from (7), we can obtain the stabilizing
form of the original tracking problem:

x ̃̇=Ax ̃+Bv, e=Cx ̃ ð9Þ

Therefore, the original tracking problem to let y track yd is equivalent to the
stabilizing problem of system (9). And it is interesting to note that system (9) has
identical form to the original system (7). So we may say that the tracking problem
of a linear system is nothing different from its stabilizing problem; the only thing
we need to do is to calculate the equivalent input and equivalent states, and output
regulation theory can help us realize it.

To use output regulation theory, we need to know the exosystem, which gen-
erates the reference output. We may suppose the exosystem is

ẇ= Sw, yd =Qw ð10Þ

Then the tracking problem is equivalent to the following output regulation
problem:

x ̇=Ax+Bu, e=Cx−Qw ð11Þ

The equivalent input and equivalent states ud, xd should meet

xḋ =Axd +Bud, e=Cxd −Qw ð12Þ

Assume the equivalent input and equivalent states are xd =Xw, ud =Uw, where
X,U are matrices needed to be solved. Substituting xd =Xw, ud =Uw into (12)
yields the regulator equation:

XS=AX +BU, 0 =CX −Q ð13Þ
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It is a matrix equation and can be easily solved, and then we can obtain the
equivalent input and equivalent states.

As for the stabilizing of system (9), we still use pole assignment. Letting
v= −Kx ̃ with x ̃= x− xd , and K ensures A−BK be Hurwitz. Combine v= u− ud we
can write the control law as

u= −Kx ̃+ ud ð14Þ

This yields the asymptotic stable closed-loop system x ̃̇= A−BKð Þx ̃, e=Cx ̃ .
Comparing (14) with (5), we can find that the asymptotic control law adds an
equivalent input and use error feedback of all states.

Now let us turn to the tracking problem of the inverted pendulum. The
exosystems in case 1 and case 2 are the same: ẇ1 =w2,w2 = −w1.

For case 1, we have sd =w1, i.e., Q= ½1 0�. The solution of the regulator
Eq. (13) is X = 1, 0; 0, 1; 0.0898, 0; 0, 0.0898½ �,U = − 10.9102, 0½ �. Then control
law (14) is applied with the same K as before. The simulation result is shown in
Fig. 4. We can see that almost perfect tracking is achieved.

For case 2, we have θd =0.2w1, i.e., Q= ½0.2 0�. The solution of the regulator
Eq. (13) is X = 2.2267 , 0 ; 0 , 2.2267; 0.2, 0 ; 0, 0.2½ �,U = − 24.2933, 0½ �. And
also the control law (14) is applied with the same K as before. The simulation result
is shown in Fig. 5. The tracking result is also very perfect.
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5 Exact Tracking Control via Stable System Center

Unlike output regulation method, which directly based on system (7) and solve all
the equivalent states and equivalent input by a regulator equation, we will consider
how to solve the tracking problem based on the normal form in this section. First,
let us introduce how to turn system (7) into a normal form.

For system (7), if CAi− 1B=0 i=1, . . . , r− 1ð Þ,CAr− 1B≠ 0. Then we say sys-
tem (7) has relative degree r, and y, y ̇, . . . , y r− 1ð Þ are called external states. By
taking the following coordinate change,

ξi = y i− 1ð Þ =CAi− 1x, i=1, 2, ..., r ; ηi
∈ x1, x2, ..., xnf g

∉ span ξ1, ξ2, ..., ξrf g ,
(

i=1, 2, ..., n− r

ð15Þ

System (7) can be converted into the normal form as

y rð Þ =Eξ+Fη+ αu

η̇=Rξ+ Sη+ Tu
ð16Þ

where ξ= ξ1, ξ2, . . . , ξr½ �T is the external states vector and η= η1, η2, . . . , ηn− r½ �T is
the internal states vector.

For simplicity, denote z= ξ, η½ �T ; then the normal form (16) can be written as

ż=A1z+B1u, y= z1 ð17Þ

According to the first equation of (16), when y moves along yd, the equivalent
input is given by

ud = α− 1 y rð Þ
d −Eξd −Fηd

� �
ð18Þ

with ξd = yd, yḋ, . . . , y
r− 1ð Þ
d

h i
. Substituting (18) into the second equation of (16)

yields

η ̇d =Rξd + Sηd + α− 1T y rð Þ
d −Eξd −Fηd

� �
ð19Þ

Denoting

Q= S− α− 1TF, rðtÞ=Rξd + α− 1T y rð Þ
d −Eξd

� �
ð20Þ
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then (19) becomes

η ̇d =Qηd + r tð Þ ð21Þ

This is known as the internal dynamics. It seems that by giving any initial value
ηd 0ð Þ we can obtain a solution ηd tð Þ through (21). But it should be noted that for
nonminimum phase system, system (21) is unstable and cannot be used to generate
a bounded ηd tð Þ. So this is the case: we need to calculate a bounded solution ηd tð Þ
that satisfies (21). This bounded solution is also called ideal internal dynamics
(IID). Stable system center [6, 7] provides a method to estimate the IID.

Suppose the eigenpolynomial of the exosystem which generates the reference
output yd is

sk + pk − 1sk− 1 + . . . + p1s+ p0 ð22Þ

Then the IID can be estimated by constructing the following causal equation

η ̂ kð Þ
d + ck− 1η ̂

k − 1ð Þ
d + . . . + c1 η̇̂d + c0η ̂d = − Pk− 1r k− 1ð Þ + . . . +P1r ̇+P0r

� �
ð23Þ

where ck − 1, ck− 2, . . . , c0 is a set of Hurwitz polynomial coefficients, and Pi is
defined by

Pk − 1 = I + ck− 1Q− 1 + . . . + c0Q− k� �
I + pk− 1Q− 1 + . . . + p0Q− k� �− 1 − I

Pk − 2 = ck− 2Q− 1 + . . . + c0Q− k− 1ð Þ − Pk− 1 + Ið Þ pk− 2Q− 1 + . . . + p0Q− k − 1ð Þ
� �

. . .

P1 = c1Q− 1 + c0Q− 2 − Pk− 1 + Ið Þ p1Q− 1 + p0Q− 2� �
P0 = c0Q− 1 − Pk− 1 + Ið Þp0Q− 1

ð24Þ

Remark Since the inversion of Q is used, Q must be nonsingular, which indicates
that this method can be only used to zero dynamics without zero eigenvalues.

To evaluate the estimate precision, we define

e= η ̂ḋ −Qη ̂d − r ð25Þ

as the estimate error.

Theorem 2 The estimate error e satisfies e kð Þ + ck − 1e k − 1ð Þ + . . . + c0e=0. And
since ck− 1, ck− 2, . . . , c0 is a set of Hurwitz polynomial coefficients, e will converge
to zero asymptotically.
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Proof From (22) we have y kð Þ
d + pk− 1y

k− 1ð Þ
d + . . . + p1yḋ + p0yd =0. And from (20)

we know that r is a combination of yd and its derivatives, thus r also satisfies
r kð Þ + pk − 1r k− 1ð Þ + . . . + p1r ̇+ p0r=0. According to (23) we have

η ̂ kð Þ
d + ck− 1η̂

k− 1ð Þ
d + . . . + c1 η̇̂d + c0η̂d = − Pk− 1r k− 1ð Þ + . . . +P1r ̇+P0r

� �
⇒ η ̂ k+1ð Þ

d + ck− 1η̂
kð Þ
d + . . . + c1η̂

2ð Þ
d + c0 η̇̂d = − Pk− 1r kð Þ + . . . +P1r 2ð Þ +P0r ̇

� �
ð26Þ

Combining (24), (25), and (26), it follows that

e kð Þ + ck− 1e k− 1ð Þ + . . . + c0e= η ̂ k+ 1ð Þ
d + ck − 1η ̂

kð Þ
d + . . . + c0η̂

1ð Þ
d −Q η ̂ kð Þ

d + ck − 1η ̂
k− 1ð Þ
d + . . . + c0η ̂d

� �
− r kð Þ + ck− 1r k− 1ð Þ + . . . + c0r
� �

= − Pk− 1r kð Þ + . . . +P1r 2ð Þ +P0r 1ð Þ
� �

+Q Pk− 1r k− 1ð Þ + . . . +P1r 1ð Þ +P0r
� �

− r kð Þ + ck− 1r k− 1ð Þ + . . . + c0r
� �

= − I −Pk− 1ð Þr kð Þ + QPk− 1 − ck− 1 −Pk− 2ð Þr k− 1ð Þ + . . . + QP1 − c1 −P0ð Þr 1ð Þ + QP0 − c0ð Þr
= − I + ck− 1Q− 1 + . . . + c0Q− k

� �
I + pk− 1Q− 1 + . . . + p0Q− k
� �− 1

r kð Þ + pk− 1r k− 1ð Þ + . . . + p0r
� �

=0

ð27Þ

This completes the proof.
According to (18), the estimate of the equivalent input is defined by

ud̂ = α− 1 y rð Þ
d −Eξd −Fη̂d

� �
ð28Þ

Denote the states tracking error z ̃= ξ ̃, η ̃½ �T with ξ ̃= ξ− ξd, η̃= η− η ̂d, and the
output tracking error y ̃= y− yd.

Theorem 3 The control law

u= −Kz ̃+ ud̂ ð29Þ

with A1 −B1K be Hurwitz can realize asymptotic tracking for system (17).

Proof Combining (20), (25), and (28), we will derive that

e= η̇̂d −Qη̂d − r= η̇̂d −Rξd − Sη̂d − Tud̂ ð30Þ

Define a new control input v= u− ud, then from (16) we have

yð̃rÞ =Eξ+Fη+ αu− yðrÞd =E ξ̃+ ξdð Þ+F η ̃+ η ̂dð Þ+ α v+ ud̂ð Þ− yðrÞd =Eξ ̃+Fη ̃+ αv

η̇̃=Rξ+ Sη+Tu− η ̂̇d =R ξ ̃+ ξdð Þ+ S η ̃+ η̂dð Þ+ T v+ ud̂ð Þ− η̇̂d

=Rξ ̃+ Sη ̃+Tv− η ̂ḋ −Rξd − Sη̂d −Tu ̂dð Þ=Rξ̃+ Sη ̃+ Tv− e

ð31Þ

which can be written as z ̃̇=A1z ̃+B1v− 0r; e½ � according to (17). Substituting
v= u− ud̂ = −Kz ̃ into it yields z ̃̇= A1 −B1Kð Þz̃− 0r; e½ �. Combine that A1 −B1K is
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Hurwitz and lim
t→∞

e→ 0 from Theorem 2 we can obtain that lim
t→∞

z ̃→ 0. This

completes the proof.

Consider the linearized model (3), the equivalent input and equivalent states are
defined by

sḋ = vd , v ̇d =0.7171θd +0.09756ud
θd =ωd, ω ̇d =7.888θd +0.07317ud

ð32Þ

In case 1, s and v are the external states. From the first two equations of (32) we
have ud = s ̈d − 0.7171θdð Þ ̸0.09756. Substituting it into the last two equations of
(32) yields

θd

ωḋ

" #
=

0 1
7.3502 0

� �
θd

ωd

" #
+

0

0.75sd̈

" #
ð33Þ

This is the internal dynamics with respect to output s. Since matrix
0 , 1 ; 7.3502 , 0½ � has eigenvalues ±2.7111, the internal dynamics is unstable. We
use (23) to estimate the IID, where p0 = 1, p1 = 0, rðtÞ= 0; − 0.75 sin t½ �. Choose
c0 = 1, c1 = 2, using (24) Pi is calculated as P0 = − 0.2395, 0; 0, − 0.2395½ �,
P1 = 0, 0.2395; 1.7605, 0½ �. So the IID estimator is designed as

θ ̈d +2θḋ + θd
ω ̂d̈ +2ω ̂ḋ +ωd̂

� �
=

0.1796 cos t
− 0.1796 sin t

� �
ð34Þ

This together with (29) consists of the control law. Choose the same control gain
as before and the initial value θd 0ð Þ= θ ̇d 0ð Þ=ω ̂d 0ð Þ=ω ̂̇d 0ð Þ. The simulation result
is shown in Fig. 6, from which we can see that the IID estimator error converges to
zero as well as the cart position tracking error within 10 s.
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In case 2, θ,ω are the external states. From the last two equations of (32) we
have ud = θḋ − 7.888θdð Þ ̸0.07317. Substituting it into the first two equations of
(32) yields

sḋ
vḋ

� �
=

0 1
0 0

� �
sd
vd

� �
+

0
− 9.8θd +1.333θ ̇d

� �
ð35Þ

This is the internal dynamics with respect to output θ. Since matrix 0, 1; 0, 0½ �
has zero eigenvalue, it cannot be inverted. Thus stable system center method cannot
be used in this case.

6 Conclusion

The approximate tracking method is simplest and is suitable for slow varying
trajectory tracking, but tracking error increases as the tracking frequency rises.
Output regulation and stable system center method can achieve asymptotic tracking.
They both need to know the exosystem of the reference output, and both focus on
transforming the tracking problem into stabilizing problem. Output regulation
method constructs regulator equation and calculates the equivalent input and
equivalent states. Stable system center method is based on the system normal form
and tries to estimate the ideal internal dynamics, but it can be only used to system
with zero dynamics that has no zero eigenvalues. Although simulation results
exhibit good performance, we should notice that these three methods are all based
on the linearized model. Exact tracking for wider range and higher frequency
reference signals still remain a challenge to the nonlinear inverted pendulum.

Acknowledgments This work is supported by NSFC under Grant No. 61273092.

References

1. Hunt LR, Meyer G (1997) Stable inversion for nonlinear systems. Automatica 33
(8):1549–1554

2. Devasia S, Chen D, Paden B (1996) Nonlinear inversion-based output tracking. Autom
Control IEEE Trans 41(7):930–942

3. Byrnes CI, Priscoli FD, Isidori A (1997) Output regulation of nonlinear systems. In: Output
regulation of uncertain nonlinear systems. Birkhäuser Boston, pp 131−140

4. Jie H, Chen Z (2005) A general framework for tackling the output regulation problem. IEEE
Trans Autom Control 49(12):2203–2218

5. Isidori A (1999) Nonlinear control systems II. Springer, London
6. Shkolnikov IA, Shtessel YB (2001) Tracking controller design for a class of

nonminimum-phase systems via the method of system center. IEEE Trans Autom Control
46(10):1639–1643

7. Shkolnikov I, Shtessel A et al (2002) Tracking in a class of nonminimum-phase systems with
nonlinear internal dynamics via sliding mode control using method of system center.
Automatica 38(5):837–842

346 L. Ye et al.



8. Landry M, Campbell SA, Morris K et al (2005) Dynamics of an inverted pendulum with
delayed feedback control. SIAM J Appl Dyn Syst 4(2):333–351

9. Angeli D (1999) Almost global stabilization of the inverted pendulum via continuous state
feedback. Automatica 37(01):1103–1108

10. Shiriaev A, Pogromsky A, Ludvigsen H et al (2000) On global properties of passivity-based
control of an inverted pendulum. Int J Robust Nonlinear Control 3(4):2513–2518 vol.3

11. Lozano R, Fantoni I, Dan JB (2000) Stabilization of the inverted pendulum around its
homoclinic orbit. Syst Control Lett 40(3):197–204

12. Olfati-Saber R (2010) Fixed point controllers and stabilization of the cart-pole system and the
rotating pendulum. In: Proceedings of the, IEEE conference on decision and control,
pp 1174–1181

13. Bedrossian NS (1992) Approximate feedback linearization: the cart-pole example. In:
Proceedings of IEEE International Conference on Robotics and Automation 1987-1992, vol 3.
IEEE

14. Gurumoorthy R, Sanders SR (1993) Controlling non-minimum phase nonlinear systems—the
inverted pendulum on a cart example. In: American control conference, pp 680−685

15. Yan Q (2004) Output tracking of underactuated rotary inverted pendulum by nonlinear
controller. In: IEEE conference on decision & control, vol. 3, pp 2395−2400

16. Huang J (2000) Asymptotic tracking of a nonminimum phase nonlinear system with
nonhyperbolic zero dynamics. IEEE Trans Autom Control 45(3):542–546

17. Khalil H (2002) Nonlinear systems. Prentice Hall

Tracking Control of a Nonminimum Phase Inverted Pendulum 347


	32 Tracking Control of a Nonminimum Phase Inverted Pendulum
	Abstract
	1 Introduction
	2 Model Description
	3 Approximate Tracking Control
	4 Exact Tracking Control via Output Regulation
	5 Exact Tracking Control via Stable System Center
	6 Conclusion
	Acknowledgments
	References


